

(Refer Slide Time: 00:23)

,,,,,,,

Alternative approach

Lzl
= e
« Extra space is required to merge -

LY
\
'

* Merging happens because elements in left half
must move right and vice versa

» Can we divide so that everything to the left is
smaller than everything to the right?

* No need to merge!

Let us address the space problem. The extra space required by merge sort is actually
required in order to implement the merge function and why do we need to merge? The
reason we need to merge is that when we do a merge sort, we have the initial list and
then we split it into two parts, but in general there may be items in the left which are

bigger than items in the right.

For instance, if we had say even numbers in the left and the odd numbers on the right
then we have to merge by taking numbers alternatively from either side. So, if we could
arrange that everything that is on the left side of our divided problem is smaller than
everything on the right side of the divided problem, then we would not need to merge @t

all and this perhaps could save . this problem of requiring extra space for the merge.

283

(Refer Slide Time: 01:19)

Divide and conquer without merging

* How do we find the median?
« Sort and pick up middle element
* But our aim is to sort!
» Instead, pick up some value in A — pivot

« Split A with respect to this pivot element

How would we do divide and conquer without merging. Assume that we knew the
median value; remember the median value in a set is the value such that half the
elements are smaller and half are bigger. We could move all the values smaller than the
median to the left half and all of those bigger than the median to the right half. As we
will see this can be done without creating a new array in time proportional to the length

of the list.

Having done this rearrangement moving all the smaller values to the left half and the
bigger values to the right half then we can recursively apply this divide and conquer
strategy and sort the right and the left half separately and since we have guaranteed that
everything in the left half is smaller than everything in the right half, this automatically
means that after this divide and conquer step we do not need to combine the answers in
any non trivial way because the left half is already below the right half. So, we do not

need to merge.

If we apply this strategy then we would get a recursive equation exactly like merge sort.
It would say that the time required to sort a list of length n requires us to first sort two
lists of size n by 2 and we do order n not for merging, but in order to decompose the list

so that all the smaller values are in the left and in the right. So, rearranging step before

284

we do the recursive step is what is order n, whereas merge was the step after the
recursive step which was order n in the previous case, but if we solve the recurrence, its

the same one, we get another order nlogn algorithm.

The big bottleneck with this approach is to find the median. Remember that we said
earlier that one of the benefits of sorting a list is that we can identify the median as the
middle element after sorting. Now here, we are asking for the median before sorting, but
our aim is to sort, it is kind of paradoxical. If we are requiring the output of the sorting to
be the input to the sorting. This means that we have to try the strategy out with @ more
simplistic choice of element to split the list. Instead of looking for the median we just
pick up some value in the list A, and use that as what is called a pivot element. We split
A with respect to this pivot so that all the smaller elements are to the left and all the

bigger elements are to the right.

(Refer Slide Time: 03:58)

Quicksort

» High level view

This algorithm is called Quicksort, it was invented by a person called C.A.R Hoare in the
1960s and is one of the most famous sorting algorithms. So, we choose a pivot element
which is usually the first glement in the list of the array. We partition A, into the lower
part and the upper part with respect to this pivot element. So, we move all the smaller

elements to the left and all the bigger elements to the right with respect to the choice of

285

pivot element, and we make sure the pivot comes between the two because we have
picked up the first glement in the array to pivot. So, after this we want to move it to the

center between the lower and the upper part and then, we recursively sort two partitions.

Here is @ high level view of how quicksort will work on a typical list. Suppose this is our
list, we first identify the beginning of the list, the first element as the pivot element. Now,
for the remaining elements we have to figure out which ones are smaller and which ones
are bigger. So, without going into how we will do this, we end up identifying 32, 22 and
13 as three elements which are smaller and marked in yellow and the other four elements

which are marked in green are larger.

The first step is to actually partition with respect to this criterion. So, we have to move
these elements around so that they come into two blocks. So that, 13, 32 and 22 come to
the left; 63, 57, 91 and 78 come to the right and the pivot element 43 comes in middle.
This is the rearranging step and now we recursively sort the yellow bits and the green
bits, then assuming we can do that, we have a sorted array and notice that since all the
yellow things are smaller than 43 and all the green things are bigger than 43, no further

merging is required.

(Refer Slide Time: 05:51)

Quicksort: Partitioni

— VoG ~ ,1‘,” -

ng
fiy%,

43 63 57 91 78

286

So let us look at how partitioning works. Here, we have the earlier list and we have
marked 43 as our pivot element and we want to do a scan of the remaining elements and
divide them into two groups; those smaller than 43, the yellow ones; those bigger than
43, the green ones and rearrange them. What we will do is we will keep two pointers; a
yellow pointer and a green pointer and the general rule will be that at any given point we
will have at some distance, the yellow pointer which I will draw in orange to make it

more visible and the green pointer.

These will move in this order; the orange pointer or the yellow pointer will always be
behind the green pointer and the inductive property that we will maintain is that these
elements are smaller than or equal to 43, these elements are bigger than 43 and these
elements are unknown. What we are frying to do is, we are trying to move from left to
right and classify all the unknown elements; each time we see anm unknown element we
will shift the two pointers so that we maintain this property that between 43 and the first
pointer we have the elements smaller than or equal to 43; between the first pointer and
the second pointer we have the element strictly greater than 43 and to the right of the

green pointer, we have those which are yet to be scanned.

Initially nothing is known then we look at 32, since 32 is smaller than the 43, we move
the yellow pointer and we also push the green pointer along. So, the unknown things start
from 22, and there is nothing between the yellow and the green pointer indicating we
have not yet found the value bigger than 43, same happens for 22. Now, when we see 78,
we notice that 78 is bigger than 43. Now, we move only the green pointer and not yellow
pointer, we have these three intervals as before. Remember that this is the part which is
less than equal to 43; this is the part thatis greater than 43 and this part is unknown. We

continue in this way.

Now, we look at 63, again 63 extends the green zone, 57 extends the green zone, 91
extends the green zone. Now, we have to do something when we find 13. So, 13 is an
element which has to be put into the yellow zone, one strategy would be to do a lot of
shifting. We move 13 to where 22 i§ or after 22 and we push everything from 78 onwards
to the right, but actually a cleverer strategy 1§ to say that 13 must g@ here. So, we need to

make space, but instead of making space we can say, it does not matter to us, we are

287

eventuially going to sort he green things AnywWay.

How does it matter which Way we sort that, we will take this 78 and just move it to 13.
So, instead of doing any shifting, we just exchange the first element in the green zone
with the element we are seeing so far, that automatically will extend both yellow zone
and the green zone correctly. So, our next step is to identify 13 as smaller than 43 and
swap it with 78. Now, we have reached an intermediate stage where to the right of the
pivot we have scanned everything and we have classified them into those which are the

smaller ones and those which are the bigger ones.

Now, it remains to push the yellow things to the left of 43. Once - we have the same
problem we saw when we included 13 in the yellow zone. If we move 43 to the correct
place then we have to move everything here to the leff, but instead we can just take this
13 in the last element to the yellow zone and replace it there and not shift 32 and 22. This
disturbs the order, but anyway this is unsorted, it just remains unsorted. So, we do this
and now we have the Affay rearrange as we wanted, all of these things to the left are
smaller than the pivot the pivot is in the middle and everything to the right is bigger than
the pivot.

(Refer Slide Time: 09:47)

Quicksort in Python
def Quicksort(A,1,r): # Sort A[l:r] .__———“"_——>

- !
ifr-1<=1 #Base case
return O

Partition with respect to pivot, a[l] N
yellow = 1+1 3

for green in range(l+1,r): S -
1T Algreen] <= A[13— RY
(A[yellow],A[green]) = (A[green],A[yellow

yellow = yellow + 1

Move pivot into place

(A[1],A[yellow-1]) = (A[yellow-1],A[1]) < 2
R i

Quicksort(A,1,yellow-1) # Recursive calls 9

Quicksort(A,yellow,r)

288

Here is an implementation in Python. So, remember that quicksort is going to have like
merge sort and like binary search, we repeatedly apply it in smaller and smaller
segments. In general, we have to pass to it the list which we call A, and the end points to
the segment the left and the right. If we have something that we are doing a slice I to r
minus 1, if this slice is 1 or 0 in length, we do nothing otherwise we follow this
partitioning strategy we had before, which is that we are sorting from 1 to r minus 1. The

position 1, this is the pivot.

We will initially put the yellow pointer here, saying that the end of the yellow zone is
actually just the pivot, there is nothing there. So, yellow is 1 plus 1 and now we let green
proceed and every time you see an element in the green the new green one which is
smaller than the one which is the pivot. Remember this is the pivot, if ever we see a
green the next value to be checked is smaller than or equal to A[l] we exchange so that

we bring this value to the end of the yellow zone.

This is what we did t@ 13 and then we move the yellow pomter as well, otherwise if we
see a value which is strictly bigger, we move only the green pointer which is implicitly
done by the for loop and we do not move the yellow. At the end of this, we have the
pivot then we have the less than equal to pivot and then we have the greater than. So, this
is that intermediate stage that we have achieved at the end of this loop. Now, we have to

find the pivot and move it to the gorreet place.

Remember that the yellow, yellow is pointing to the position beyond the last element
smaller than that. So, yellow is always one value before, beyond this. So, we take the
yellow minus 1 value and exchange it with the left value and now what we need to do is
we have now less than p, p, greater than p and this is where yellow is. So, we need to go
from 0 to yellow minus 1, we do not want to sort p again. Because p is already put in the

correct place, so we quicksort from 1 to yellow minus 1 and from yellow to the right end.

289

(Refer Slide Time: 12:11)

Here, we have written the Python code that we saw in the slide in a file. You can check
that it is exactly the same code that we had in the slide. We can try and run it and verify
that it works. So, we call Python and we impeort this function. Remember that this is
again a function which sorts in place. If you want to sort something and see the effect we
have to assign it a name and then sort that name and check the name afterwards. Let us,
for instance, take a range of values from say 500 down to O then if we say quicksort(l)

then we have to of course, give it the end then 1 gets correctly sorted.

So, you cannot see all of it, but you can see from 83, 84 up to 102 up to 500. Now, we
have the same problem that we had with insertion sort. If we say 1000 and then we try to
quicksort this, we will get this recursion depth because as we will see, in the worst case
actually, quicksort behaves @ bit like insertion sort and this is a bad case. So, to get
around this we would have to do the usual thing - we have to import the sys module and
set the recursion limit to something superbly large, say 10000, maybe 100,000 and then

if we ask it to quicksort there is no problem.

This is another case where this recursion limit in python has to be manually set and one
thing we can see actually is that quicksort is not as good as we believe because if we

were to, for instance, sort something of size say 7500 then it takes a visible amount of

290

time. We saw that merge sort which was n log n gould'de 5000 and 10000 and even

100,000 instantancously.

So, clearly quicksort is not behaving as well as merge sort and we will see in fact, that
quicksort does not have an order n log n behavior as we would have liked and that is
because we are not using the fmedian, but the first value to speak. We will see that in the

next lecture as to why quicksort is actually not a worst case order n log algorithm.

291

